Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS Comput Biol ; 17(9): e1009384, 2021 09.
Article in English | MEDLINE | ID: covidwho-1405333

ABSTRACT

Apart from the canonical fingers, palm and thumb domains, the RNA dependent RNA polymerases (RdRp) from the viral order Nidovirales possess two additional domains. Of these, the function of the Nidovirus RdRp associated nucleotidyl transferase domain (NiRAN) remains unanswered. The elucidation of the 3D structure of RdRp from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), provided the first ever insights into the domain organisation and possible functional characteristics of the NiRAN domain. Using in silico tools, we predict that the NiRAN domain assumes a kinase or phosphotransferase like fold and binds nucleoside triphosphates at its proposed active site. Additionally, using molecular docking we have predicted the binding of three widely used kinase inhibitors and five well characterized anti-microbial compounds at the NiRAN domain active site along with their drug-likeliness. For the first time ever, using basic biochemical tools, this study shows the presence of a kinase like activity exhibited by the SARS-CoV-2 RdRp. Interestingly, a well-known kinase inhibitor- Sorafenib showed a significant inhibition and dampened viral load in SARS-CoV-2 infected cells. In line with the current global COVID-19 pandemic urgency and the emergence of newer strains with significantly higher infectivity, this study provides a new anti-SARS-CoV-2 drug target and potential lead compounds for drug repurposing against SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Protein Domains , SARS-CoV-2/drug effects , Catalytic Domain , Computer Simulation , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Humans
2.
Matern Child Nutr ; 17(3): e13131, 2021 07.
Article in English | MEDLINE | ID: covidwho-1066737

ABSTRACT

If maternal milk is unavailable, the World Health Organization recommends that the first alternative should be pasteurised donor human milk (DHM). Human milk banks (HMBs) screen and recruit milk donors, and DHM principally feeds very low birth weight babies, reducing the risk of complications and supporting maternal breastfeeding where used alongside optimal lactation support. The COVID-19 pandemic has presented a range of challenges to HMBs worldwide. This study aimed to understand the impacts of the pandemic on HMB services and develop initial guidance regarding risk limitation. A Virtual Collaborative Network (VCN) comprising over 80 HMB leaders from 36 countries was formed in March 2020 and included academics and nongovernmental organisations. Individual milk banks, national networks and regional associations submitted data regarding the number of HMBs, volume of DHM produced and number of recipients in each global region. Estimates were calculated in the context of missing or incomplete data. Through open-ended questioning, the experiences of milk banks from each country in the first 2 months of the pandemic were collected and major themes identified. According to data collected from 446 individual HMBs, more than 800,000 infants receive DHM worldwide each year. Seven pandemic-related specific vulnerabilities to service provision were identified, including sufficient donors, prescreening disruption, DHM availability, logistics, communication, safe handling and contingency planning, which were highly context-dependent. The VCN now plans a formal consensus approach to the optimal response of HMBs to new pathogens using crowdsourced data, enabling the benchmarking of future strategies to support DHM access and neonatal health in future emergencies.


Subject(s)
Breast Feeding , COVID-19 , Milk Banks , Female , Humans , Infant , Infant, Newborn , Milk, Human , Pandemics/prevention & control , SARS-CoV-2
3.
ACS Omega ; 5(29): 18356-18366, 2020 Jul 28.
Article in English | MEDLINE | ID: covidwho-693535

ABSTRACT

The current COVID-19 outbreak warrants the design and development of novel anti-COVID therapeutics. Using a combination of bioinformatics and computational tools, we modelled the 3D structure of the RdRp (RNA-dependent RNA polymerase) of SARS-CoV2 (severe acute respiratory syndrome coronavirus-2) and predicted its probable GTP binding pocket in the active site. GTP is crucial for the formation of the initiation complex during RNA replication. This site was computationally targeted using a number of small molecule inhibitors of the hepatitis C RNA polymerase reported previously. Further optimizations suggested a lead molecule that may prove fruitful in the development of potent inhibitors against the RdRp of SARS-CoV2.

SELECTION OF CITATIONS
SEARCH DETAIL